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This work is the part of a broad research on bio-molecular-based device concepts for enhanced sensing Terahertz (THz) 

frequency bio-signatures using Multi-Photon, Multi-Wavelength Processes within Bio-Molecular Architectures.  Terahertz region 

in the vibrational spectra of a certain molecule reveals the intramolecular vibrations between weakly bonded or non-bonded 

groups. Additional information can be acquired by photo-induced transitions between metastable states of the target agent. 

Research Goal is to provide important information regarding the general feasibility of multi-state spectral sensing. Different 

isomers of stilbene and its derivatives can be utilized in order to obtain the spectral “terahertz fingerprint” using multi-state 

spectral sensing technology. As the first step basic parameters of stilbene and its derivatives have  been determined in order to 

prove the feasibility of detectors utilizing these molecules. 

One of the most useful characteristics stilbene and its derivatives own is that they are able to form very stable bridged hairpins 

with DNA. TMS-DNA structure is one of the most stable one among various kinds of stilbene-DNA structures. As the next step 

3,4,5-trimethoxystilbene carboxamidopropane (TMS) -DNA structure has  beeen optimized.By performing normal mode analysis 

(NMA) over the optimized structure, it is possible to get the oscillator strength against frequency characteristics for both  cis-TMS 

capping with DNA and trans-TMS capping with DNA structures.
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increase the fidelity of DNA duplexes as oligonucleotide hybridization probes. TMS-DNA structure is 
one of the most stable one among various kinds of stilbene-DNA structures. 

We study photo-induced transitions of stilbene and its derivatives and the change of vibrational 
spectra as a result of these transitions. All derivatives have vibrational frequencies in the THz region 
with a large difference in frequencies between two isomers. TMS-DNA structure, (TMS-TGCGCA)2, 
is optimized. the oscillator strength against frequency characteristics for both  cis-TMS capping with 
DNA and trans-TMS capping with DNA structures is determined. 
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This work is the part of a broad research on bio-molecular-based device concepts for enhanced 
sensing Terahertz (THz) frequency bio-signatures using Multi-Photon, Multi-Wavelength 
Processes within Bio-Molecular Architectures.   
  
Research Goals: 

Terahertz region in the vibrational spectra of a certain molecule reveals the intramolecular 
vibrations between weakly bonded or non-bonded groups. Additional information can be acquired 
by photo-induced transitions between metastable states of the target agent. Research Goal is to 
provide important information regarding the general feasibility of multi-state spectral sensing. 
Different isomers of stilbene and its derivatives can be utilized in order to obtain the spectral 
“terahertz fingerprint” using multi-state spectral sensing technology. As the first step basic 
parameters of stilbene and its derivatives have to be determined in order to prove the feasibility of 
detectors utilizing these molecules.  

One of the most useful characteristics stilbene and its derivatives own is that they are able to 
form very stable bridged hairpins with DNA. TMS-DNA structure is one of the most stable one 
among various kinds of stilbene-DNA structures. As the next step 3,4,5-trimethoxystilbene 
carboxamidopropane (TMS) -DNA structure has to be optimized. 
 By performing normal mode analysis (NMA) over the optimized structure, it is possible 
to get the oscillator strength against frequency characteristics for both  cis-TMS capping with 
DNA and trans-TMS capping with DNA structures. 
  
1. INTRODUCTION 
 

The submillimeter-wave frequency regime (i.e., ~ 0.1-10 THz) is predicted to be fairly rich with 
spectral features that are dependent on internal vibrations involving weakly bonded or non-bonded 
groups spread over large portions of the complex molecules. Since these vibrational modes are 
unique to a particular molecule, the THz region may allow the identification of unknown 
substances through a spectral ‘terahertz fingerprint’. Previous research shows that THz sensing 
has the potential to be applied as general characterization of biological agents by detecting and 
identifying hidden dangerous biological materials through their transmission or reflectivity 
spectra. Experiments based on transmission features of Salmon DNA and Herring DNA give 
supportive data on that. 

However, simple THz sensing technology cannot be widely used because the output power of 
available sources is limited. In addition the absolute absorption is relatively weak. To conquer 
this bottleneck, Multi-state Spectral Sensing technology is developed. Changes of the 
microscopic conformational structure of bio-molecules stimulated by external factors will affect 
changes in THz spectral signatures. Multi-state Spectral Sensing is the methods of incorporating 
biological elements with electronic architecture to achieve higher-level function and spectral data 
processing within a nanoscale and molecular-level architecture. It is able to expand the amount of 
available spectral signature information. 

To obtain better control effects, suitable molecule system for Multi-state Spectral Sensing 
should be chosen. A good molecule system should contain two or more metastable states with 
different geometries, and these conformational states can be switched by external force, such as 
photo induced transitions and voltage induced transitions. 

The impact of this research is that it will derive Terahertz (THz) spectral bio-signatures for 
organic molecules that are amenable to photo-induced metastable state conformations, define 
THz properties associated with both electronic and geometrical transformations of bio-molecules 
under the influence of coupling to other organic and inorganic systems and will establish an 
initial scientific foundation and design blueprint for an enhanced THz bio-signature sensing 
capability. 
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Different isomers of stilbene and its derivative 3,4,5-trimethoxystilbene carboxamidopropane 
(TMS) can be combined with DNA structure.  Oligonucleotides are widely used as hybridization 
probes, primers, and biomedical agents. In common cases it is quite often for oligonucleotide 
hybridization probes to match their target sequence in a sea of competing sequences. High fidelity 
hybridization probes should bind their fully complementary target sequence precisely. This is 
crucial when single-nucleotide resolution is required, either because the expression of genes from 
closely related families of proteins is to be monitored or because single-nucleotide 
polymorphisms are to be detected by hybridization.  

This target can be achieved without difficulty inside the duplex of DNA because one 
mismatch base pair will affect several pairs near them and the stability will fall significantly. 
However, this is not true for DNA terminals due to fraying and few neighboring base pairs 
affected. Even for some short oligonucleotides, a mismatch at the terminus results in the decrease 
of the UV-melting point by only a few degrees, and the free energy of binding by <1 kcal/mol, 
both for DNA and for RNA. Due to the low fidelity of the termini of duplexes, the usefulness of 
DNA is limited. 

This problem can be solved by capping the termini with covalent linkers, such as stilbene 
and its derivatives. Stilbene-DNA is able to form very stable bridged hairpins. Letsinger et.al. [1] 
found that stilbene-carboxamides were better bridges for hairpins. Moreover, based on 
experiments focusing on the UV-melting point for different kinds of stilbene-carboxamides, the 
highest melting point is detected for 3,4,5-trimethoxystilbene carboxamide (TMS) [2]. 

Also TMS capping is important for the following 2 reasons [3]:  
1.Many key biochemical processes contain the steps between DNA terminus and an external 

ligand. TMS-DNA binding system can be a good reference for research on these problems.  
2. TMS-DNA capping provides a planar surface where π-stacking interactions can be studied 

more extensively than usual in folded bio-macromolecules.  
This work introduces the multi-state spectral sensing for terahertz technology and stilbene and 

its derivatives, then performs simulations and experiments on different conformations of isomers 
with the density functional theory in gas phase showing the potential energies curves and surfaces 
for both ground state and excited state of stilbene and one of its derivates TMS.  

 
2. STILBENE AND ITS DERIVATIVES 

Cis- and trans- stilbene are two isomers, shown in Fig. 1. In this type of isomers, two 
conformations result from the restricted rotation around the carbon-carbon double bond (C1- 
C1’). Compared with other molecules such as long chain structure, ring-contained structure in 
stilbene is more stable and these two isomers can be converted to each other under light 
excitation. Quantum yield of this isomerization can be tuned by the solvent, medium viscosity, 
and temperature. In addition, chemistry of stilbene allows for the creation of various functional 
derivatives.  

 

 
trans-stilbene 
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cis-stilbene 
 
 
Fig. 1 Structures of trans- and cis-stilbene 
 
A. Stilbene 

The infrared spectra of cis- and trans- stilbene are calculated with with the DFT using 
B3LYP/6-31G(d) function . The low-frequency part is shown in Fig. 2. It can be observed in Fig. 
2 that strongest peaks of cis- and trans-stilbene located at 55 cm-1 and 239 cm-1 respectively are 
quite different. Cis-stilbene is dominating at higher-frequency region.  Moreover, no vibrational 
modes are detected under 30 cm-1. These are expected for various stilbene derivatives.  
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Fig. 2 Infrared spectra of stilbene 
 
Six stilbene derivatives with different side groups or combination of side groups are studied 

with geometric structures shown in Figure 3. In (a), a nitro group is linked to one phenyl ring 
while in (b) it is replaced by a methoxy group. In trans-4-methoxy-4’-nitrostilbene, one methoxy 
group is added to one phenyl ring and one nitro group is linked to the other as shown in (c) while 
in (d) and (e) methoxy is taken place by amino and dimethylamino respectively. In Figure 3 (f), a 
more complicated derivative is shown where three methoxy groups are linked to one phenyl ring 
and carboxamidopropane group is connected to the other ring. 
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Fig. 3 Geometric structures of stilbene derivatives: (a) trans-4-nitrostilbene; (b) trans-4-
methoxystilbene; (c) trans-4-methoxy-4’-nitrostilbene; (d) trans-4-amino-4’-nitrostilbene; (e) 
trans-4-dimethylamino-4’-nitrostilbene; (f) trans-trimethoxystilbene carboxamidopropane (TMS). 

 
 
The infrared spectra of the derivatives and their isomers are calculated with B3LYP/6-31G 

(d) function and the low-frequency part of spectra are shown from Figure 4 (a) to (f). With side 
groups added to phenyl rings, vibrational modes of stilbene derivatives make appearance in the 
frequency region of our interest. The strongest vibrational modes of trans- and cis- isomers are 
quite distinguishable for (a), (b), (d), and (f) which make them promising candidates as functional 
components in molecular electronic device to process data in long wavelength region. For (a) 4-
nitrostilbene, cis- conformation absorbs signal at 25.9 cm-1 while trans- conformation absorbs 
signal at 34.0 cm-1. For (b) 4-methoxystilbene, cis- conformation absorbs signal at 26.8 cm-1 and 
trans- conformation absorbs signal at 35.6 cm-1. For (d) 4-amino-4’-nitrostilbene, trans- 
conformation will interact with input wave with frequency at 9.3 cm-1 while cis- conformation 
will interact with input wave with frequency at 24.6 cm-1. As for (f) trimethoxystilbene 
carboxamidopropane (TMS), trans-conformation will reduce the input signal at 18.7 cm-1 while 
cis- conformation will do the same thing to input signal at 33 cm-1. Another conclusion we can 
make from Figure 4 (a) to (f), conformational modification enhanced sensing of stilbene 
derivatives can be realized because spectral fidelity exists in isomers of various stilbene 
derivatives.  

Strong correlation in vibrational frequencies can be seen between Figure 4 (a) and (b). Three 
vibrational modes 25.9 cm-1 (cis), 29.3 cm-1 (cis), and 34.0 cm-1 (trans) shown in Figure 4 (a) 
reappear in (b) and shift simultaneously to higher frequency region at 26.8 cm-1 (cis), 31.0 cm-1 

(cis), and 35.6 cm-1 (trans) because the mass of methoxy group in (b) is smaller than that of nitro 
group in (a). The same correlation can be observed from Figure 8.4 (c) and (d). Four vibrational 
modes 4.6 cm-1 (trans), 22.7 cm-1 (cis), and 27.0 cm-1 (trans), 28.9 cm-1 (cis) in (c) shift to higher 
frequency region at 9.3 cm-1 (trans), 24.6 cm-1 (cis), 29.9 cm-1 (trans), and 30.8 cm-1 (cis) in (d) 
slightly because the mass of amino group in (d) is smaller than that of methoxy group in (c). If we 
apply the same correlation to derive spectra of 4-dimethylamino-4’-nitrostilbene from (c) or (d), 
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vibrational modes in (e) should come from the same modes as shown in (c) or (d) and shift to 
lower frequency region. However, that is not the case shown in (e) where we have five vibrational 
modes at 12.0 cm-1 (trans), 14.9 cm-1 (trans), 21.3 cm-1(cis), 28.2 cm-1 (cis) and 30 cm-1 (trans). 
Although two vibrational modes of cis- conformation can be predicted from (c) or (d) where 21.3 
cm-1 (cis) is from 22.7 cm-1 (cis) in (c) or 24.6 cm-1 (cis) in (d), 28.2 cm-1 (cis) is from 28.9 cm-1 
(cis) in (c) or 30.8 cm-1 (cis) in (d), three vibrational modes of trans do not follow the rule. The 
explanation can be that the effect of structure difference between dimethylamino group and 
amino group exceeds the effect of mass difference and structures of the side groups will affect the 
force constant of vibrational modes. Correlation between (f) and others are not easily derived 
because of its much more complicated structure. 
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Fig.4 Low-frequency vibrational spectra (< 40 cm-1) of trans- and cis- isomers calculated with 
B3LYP/6-31G (d) function . 
Raw frequencies are scaled by 0.96 to eliminate the systematic errors . 
 

Different confirmations of stilbene are studied with the density functional theory (DFT) in 
gas phase to obtain the potential energies for ground states (S0) and excited states. At first, one-
dimensional modeling is executed with torsion angle θ  (the rotation around the carbon-carbon 
double bond C1- C1’ ) as the reaction coordinate.  These are calculated with B3LYP/6-31G(d) 
function and the vertical transitions from the ground to state excited state occurs under 
illumination with a proper frequency. Partial optimization is executed by fixing θ with all the 
other being modified to lower the energy of a molecule. Optimized trans- and cis-stilbene ground-
state structures are the starting points for trans- and cis- sides, respectively. To reveal possible 
pathways through which isomerization of stilbene occurs, PECs for ground state and first excited 
state of stilbene are constructed, shown in Fig. 5. There are also two different perpendicular 
structures from the cis- and trans -side because they evolve from two different starting structures 
on trans- and cis- side apart which are different in all parameters. After illumination excited cis-
stilbene relaxes to a local minimum at θ=40o. On trans- side, the excited trans-stilbene is a 
minimum in energy. 
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Fig. 5.  PEC of the ground and first excited states of trans and cis-stilbene from partial 
optimization calculations 

 
 
For two dimensional simulation a torsion angle (θ) and C2-C2’ distance is singled out as two 

reaction coordinates. The reason for using C2-C2’ distance as the coordinate is that theoretical 
and experimental evidences have argued that it plays a major role in tuning the interaction 
between two phenyl rings. In the equilibrium configurations of trans-, cis- stilbene and DHP, the 
distances between C2 and C2’ are about 5.46 A, 3.25 A and 1.53 A respectively. Fig. 6 is a two 
dimensional simulation for both C-C distance and torsion angle, showing the potential energy 
surface of ground and excited state stilbene.  
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Fig. 6 Potential energy surface of stilbene 
 
 
 
During the simulation process, an intermediate structure, dihydrophenanthrene (DHP, 

showing in Fig. 7), is calculated and optimized, too. The ground state energy simulation result 
indicates that the potential energy of DHP is only 1.937 eV higher than that of cis-stilbene.  
Although DHP is a thermally unstable conformation and has not ever been isolated, spectroscopic 
study in pump-probe experiments has proved its existence via its long wavelength absorption 
band. DHP reverts to cis-stilbene in the dark and non-oxygen environment in a time ranging from 
seconds to minutes depending on the ambience. In the presence of oxygen, DHP will get deprived 
of two hydrogen atoms, turn to phenanthrene (see Figure 8) and can not return to cis-stilbene (see 
Scheme 9). 

The experimental evidence shows that the lifetime of excited cis-stilbene is about 300 fs in gas 
phase]. It has been observed that excited trans-stilbene has a lifetime of about 80 ps in gas phase, 
much longer than excited cis-stilbene. These results are natural because the barrier exists in the 
region of trans configuration.   
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Fig. 7 optimized structure of DHP 
 
 
 

 

                
 

DHP     phenanthrene 
 
Figure 8. Schematic structures of (a) DHP and (b) phenanthrene. 
 
 

 
 
Figure 9. Schematic conversion of cis-stilbene into phenanthrene. 
 

 
B. TMS 

Cis- and trans-TMS (Fig 10) are two isomers. They can be converted to each other under 
light excitation. Simulation on these two isomers was run with B3LYP/6-31G(d) functions using 
Gaussian 98  package (Fig 11). At the beginning optimization of ground state energy is calculated 
for cis- and trans-TMS. It proved that the optimized ground state energy for cis-TMS and trans-
TMS are -31861.87 eV and -31862.06 eV. Also excited states of optimized cis- and trans- TMS 
are calculated, for both singlet and triplet, showing in Table I and II. Transition energies along 
with its corresponding oscillator strengths are displayed. 
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Fig. 10 Schematic structure of cis- and trans-TMS 

 
 
 

 
 
 
 

cis-TMS 
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trans-TMS 

 
Fig. 11 Optimized structure of cis- and trans-TMS 

 
 
 

TABLE I: Exciting State Transition Energies (ΔE, eV) and oscillator strengths (f, km/mol) for cis-
TMS 

 
Cis-TMS Singlet Triplet 
Exciting State ΔE f ΔE f 
0-1 3.8771 0.2607 2.8820 0.0000 
0-2 4.0701 0.0132 3.4992 0.0000 
0-3 4.5515 0.0208 3.7279 0.0000 
0-4 4.7229 0.0073 4.1205 0.0000 
0-5 4.8709 0.2821 4.2221 0.0000 
0-6 4.9935 0.0066 4.2838 0.0000 

 
TABLE II: Exciting State Transition Energies (ΔE, eV) and oscillator strengths (f, km/mol) for trans-

TMS 
 

Trans-TMS Singlet Triplet 
Exciting State ΔE f ΔE f 
0-1 3.7620 0.8652 2.5382 0.0000 
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0-2 3.9931 0.0187 3.4680 0.0000 
0-3 4.4240 0.0139 3.5505 0.0000 
0-4 4.6274 0.0232 4.1107 0.0000 
0-5 4.7441 0.3650 4.1893 0.0000 
0-6 4.9369 0.0107 4.2634 0.0000 

 
 
 
 
 
Then these two optimized structures were taken as starting points and all energies as 

functions of torsion angle were calculated using partial optimization. It proved that ground state 
energy increases 20eV when the torsion angle increases from 0° to 90° for cis-TMS and this is 
similar to trans-TMS. Hence this rotation does not provide the optimal path between two isomers. 
This problem requires additional study. 

Similar to stilbene an intermediate structure between cis- and trans-TMS transformations, 
2,3,4-trimethoxy-6 -carboxamidopropyl-4a,4b-dihydrophenanthrene (TCD, showing in Fig 12), is 
captured during the simulation process. The potential energy of TCD is only 1.55 eV higher than 
that of cis- TMS, showing it is a relatively stable intermediate structure. 

 
 

 
 
 

Fig.12.  Schematic structure of TCD 
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Fig.13.  Optimized structure of TCD 

 
 
 
 
One of the most useful characteristics stilbene and its derivatives own is that they are able to 

form very stable bridged hairpins with DNA. As it is mentioned, TMS-DNA structure is one of 
the most stable one among various kinds of stilbene-DNA structures. Using Amber 10 package, a 
TMS-DNA structure, (TMS-TGCGCA)2, is optimized to an optimal structure (partial structure 
shown in Fig 14) . 

 
 
 
 
 
 

 
 
 

Fig. 14 Partial structure of optimized (cis-TMS-TGCGCA)2 capping structure 
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 Also by performing normal mode analysis (NMA) over the optimized structure using 
amber, it is possible to get the oscillator strength against frequency characteristics for both  cis-
TMS capping with DNA and trans-TMS capping with DNA structures, showing in Fig. 11. 
 
 
 
 

 
 
Fig. 15. Oscillator strength vs. frequency for (cis-TMS-TGCGCA)2 and  (cis-TMS-TGCGCA)2, 

shown in black and red bars respectively. 
 
 
Results of this research have been published in IEEE Transactions on Nanotechnology by Boris 
Gelmont, Yikan Chen, Zhen Xie, Ying Luo, James Jensen. In the same issue of this journal the 
paper of Alexei Bykhovski and Dwight Woolard [3] have been published where more detailed 
analysis of DNA duplex with TMS end capping has been provided. 
 
 
3. Development of a theory for frequency shift: interactions of biological molecules 
with substrates. 
 
Finding shift of frequencies due to the substrate  is one of the challenging problems. In 
particular molecules can be attracted to the surface without chemical bonding.  Such an 
interaction is responsible for the surface tension. Van der Waals forces are responsible 
for interaction between molecules and a substrate. The shift in vibrational frefuencies is 
calculated using MD simulation. Some of the modes are more sensitive to the Van der 
Waals forces are responsible for interaction between molecules and a substrate than 
others. 
 
4. CONCLUSION 
 We have performed simulations of potential energy for different isomers of stilbene and 
its derivatives. In addition to trans and cis- isomers the third isomer has been found and 
optimized. These results suggest that stilbene and TMS, as effective covalent linkers to DNA, are 
strong candidates for multi-state spectral sensing technology due to their distinct differences of 
vibrational frequencies of different isomers. 
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